Deep Reinforcement Learning for Traffic Signal Control: A Review
نویسندگان
چکیده
منابع مشابه
Using a Deep Reinforcement Learning Agent for Traffic Signal Control
Ensuring transportation systems are efficient is a priority for modern society. Technological advances have made it possible for transportation systems to collect large volumes of varied data on an unprecedented scale. We propose a traffic signal control system which takes advantage of this new, high quality data, with minimal abstraction compared to other proposed systems. We apply modern deep...
متن کاملReinforcement Learning For Adaptive Traffic Signal Control
By 2050, two-thirds of the world’s 9.6 billion people will live in urban areas [2]. In many cities, opportunities to expand urban road networks are limited, so existing roads will need to more efficiently accommodate higher volumes of traffic. Consequently, there is a pressing need for technologically viable, low-cost solutions that can work with existing infrastructure to help alleviate increa...
متن کاملDeep Reinforcement Learning for Traffic Light Control in Vehicular Networks
Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. To improve efficiency, taking real-time traffic information as an input and dynamically adjusting the traffic light duration accordingly is a must. In terms of how to dynamically adjust traffic signals’ duration, existing works either split the traffic signal into equal duration or extra...
متن کاملAdaptive Traffic Signal Control: Deep Reinforcement Learning Algorithm with Experience Replay and Target Network
Adaptive traffic signal control, which adjusts traffic signal timing according to real-time traffic, has been shown to be an effective method to reduce traffic congestion. Available works on adaptive traffic signal control make responsive traffic signal control decisions based on human-crafted features (e.g. vehicle queue length). However, human-crafted features are abstractions of raw traffic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3034141